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Nine controller workload models are evaluated based on their ability to use sector
and traffic data to estimate subjective controller workload measurements in generic high-
altitude airspace. The evaluation utilized data from a human-in-the-loop simulation in-
volving five recently-retired controllers working on five current high-altitude sectors using
tools and procedures appropriate for future generic airspace. Workload models based only
on aircraft count and sector capacity estimate controller workload less accurately than
models that are a linear combination of 3–17 workload factors. Existing workload mod-
els like Dynamic Density and Simplified Dynamic Density achieve errors that are at least
8% lower when their parameters are estimated with training data from this generic high-
altitude human-in-the-loop simulation. However, the square of the correlation (R2) values
for the Dynamic Density and Simplified Dynamic Density models are at least 0.3 lower
in generic high-altitude airspace than in other types of airspace, so these models explain
less of the variation in controller workload ratings in generic high-altitude airspace than
in other airspaces. A new model referred to as Dynamic Density for generic high-altitude
airspace achieves error values that are at least 10% lower than those achieved by any other
model in generic high-altitude airspace, but does not achieve R

2 values as large as those
reported for other models in other types of airspace.

I. Introduction

Currently, air traffic controllers are only permitted to control a small number of sectors because current
procedures require them to know a significant amount of sector-specific information. In the future, automa-
tion and procedures will allow controllers to control any of a large set of “generic” sectors. Due to differences
in automation, operations, and controller familiarity, the workload induced by a traffic situation in a sector
operated using generic procedures may be different than the workload induced by the same traffic situation
in the same sector operated using today’s procedures.

Many models for estimating controller workload in current operations have been proposed and evalu-
ated.1–9 Workload has been studied and modeled in scenarios with various levels of automation, aircraft
equipage, and traffic volumes.10, 11 Also, controller acceptability of generic high-altitude airspace has been
evaluated with human-in-the-loop simulations.12 However, workload estimation models have not been eval-
uated in or developed for generic high-altitude airspace. More precisely, the previous workload research
does not exclusively consider airspace sectors that have an altitude floor of 34,000 feet being controlled by
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controllers that are not familiar with the airspace using a particular set of automation that will be available
in generic airspace. This set of automation includes controller-pilot data link communications, automated
conflict detection, and suggested conflict resolutions.

In this paper, data from a human-in-the-loop simulation of generic high-altitude airspace13, 14 is used to
evaluate the ability of existing workload models7–9, 11 to estimate controller workload in generic high-altitude
airspace. The parameters in these existing models are estimated with these human-in-the-loop simulation
data in an effort to improve the ability of the models to estimate workload for generic high-altitude airspace.
In addition, a new workload model is proposed. Its parameters are estimated with these human-in-the-loop
data, and its ability to estimate workload in generic high-altitude airspace is evaluated.

The remainder of this paper is structured as follows. The next section discusses previous research on the
topic of controller workload modeling and generic high-altitude airspace. The technical approach, including
the human-in-the-loop simulation and analyzed workload models, are presented in Section III. Section IV
discusses the performance of the workload models and some estimated model parameter values. The paper
finishes with conclusions in Section V.

II. Background

II.A. Workload Research

In current operations, the number of aircraft in a sector is often used to estimate the workload of the sector
controller. However, this model is viewed as inadequate, and there is a significant body of research concerned
with developing more sophisticated models. Some approaches involve non-linear estimators or predictors
based on approaches like neural networks.1 Others are multi-dimensional workload estimates with factors
selected to enable supervisor decisions about how to reduce workload.2 Many of the proposed workload
metrics are referred to as dynamic density, and they typically generate an estimate from a linear combination
of dynamic density factors.3–6, 8, 10 Dynamic density factors are workload-inducing characteristics of traffic
in a sector, such as aircraft density, the number of ascending or descending aircraft, the variance of aircraft
headings, or the number of aircraft near sector boundaries. In some research,9 the workload factors are
theoretically derived by making some assumptions about the nature of air traffic and controller workload.

Most workload models involve some parameters that must be estimated. If the workload model is based
on certain assumptions about what causes workload and about air traffic, the parameters may be expressed
as analytic functions of the traffic and sector characteristics.9, 15 More commonly, the parameters are es-
timated by using subjective controller workload estimates, measurements of factor values, and regression
techniques.3, 7 Air traffic controllers are asked to control an air traffic situation in a simulator and esti-
mate their workload during the simulation. Factor values are computed from the measurements of airspace
and aircraft states during the simulation. For linear workload models, the samples of workload estimates
and instantaneous measurements of factor values are used in statistical regression techniques to estimate
appropriate parameters.

II.B. Generic Airspace Research

In the future, automation and procedures may allow appropriately trained controllers to control any of a
large set of generic sectors. The primary benefit of this will be that controllers will be able to be deployed
in response to system need to a greater extent than they are today.13, 14 Such generic airspace will likely
be implemented first in high altitude airspace (34,000 feet and above) because traffic and operations are
relatively similar across sectors in this airspace.12

III. Technical Approach

III.A. Human-in-the-Loop Simulation

A human-in-the-loop simulation of generic high-altitude airspace was conducted in December of 2009 at
NASA Ames Research Center.13, 14 The purpose of this simulation was two-fold. The first purpose was to
determine whether controllers can acceptably manage unfamiliar sectors when provided with future automa-
tion tools and specific sector data. The simulation was designed primarily to achieve this purpose. The
second purpose was to “calibrate dynamic density metrics for generic sectors.”13 The objective of this paper
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is to achieve this second purpose with data from the simulation.
The simulation was conducted in the Crew-Vehicle Systems Research Facility Air Traffic Control Lab-

oratory. This laboratory has air traffic control positions, pseudo-pilot workstations, and a communication
system. It uses the Multi Aircraft Control System (MACS) to simulate the Display System Replacement user
interface that is currently used by controllers at Federal Aviation Administration (FAA) en route air traffic
control facilities.16 MACS was configured to provide controller-pilot data link communications for all clear-
ances (with voice backup), automated conflict detection, and suggested conflict resolutions.13 It is assumed
that this level of automation will be implemented before generic high-altitude airspace is used operationally.
Aside from the main MACS display, each controller workstation had a “Controller Information Tool” (CIT),
which was designed to provide information so that controllers unfamiliar with a sector can still control traffic
in the sector.13 The CIT shows a map of the sectors in the simulation and information about them on a 30-
inch display. A mouse controls what information is displayed on the CIT. The information available on the
CIT includes sector boundaries, altitudes, names, and radio frequencies, Special Use Airspace information,
fix and NAVAID locations and names, and major traffic flow locations and information.

In this simulation, sectors 30, 33, and 43 from Oakland Air Route Traffic Control Center (ARTCC)
(abbreviated as ZOA) and sectors 42 and 45 from Salt Lake City ARTCC (ZLC) were used to create a
fictitious ARTCC referred to as “West High Center,” abbreviated as “ZHW.” These sectors were modified
slightly so that they all had a floor altitude of 34,000 feet. This fictitious ARTCC is shown in figure 1.

The traffic for the two primary simulation scenarios was derived from historical traffic in ZOA and ZLC.
The historical traffic was from 9 July 2009 and 21 May 2009, two summer Thursdays with relatively high
traffic volume, low delay, and low weather-related delay according to the national statistics in the Operational
Network database.17 Each scenario was 45 minutes to one hour long and designed to start with a low level
of workload and build to a moderate level of workload after about 20 minutes.

Figure 1. The sectors in the fictitious West High Center (ZHW) used in the human-in-the-loop simulation13 are outlined
with thick red lines. Current day Centers are outlined with thin lines and labeled with their three-letter abbreviations.
The airspace outlined with a dark blue line has been proposed for a national high altitude airspace concept being
developed by the FAA.

Five air traffic controllers who retired less than three years ago from either ZOA or ZLC were recruited for
these simulations. The controllers had controlled and were therefore familiar with one or two of the sectors
but not the others, allowing for investigations regarding the impact of controller familiarity on workload.
Ten data collection simulation runs were conducted, each lasting for 45 minutes to one hour. Each controller
worked each of the five sectors with each of the two traffic scenarios exactly once.

At five-minute intervals during the runs, controllers indicated their perceived workload level on an integer
scale from 1 (low workload) to 5 (high workload). More precisely, the controllers were instructed that a
rating of 1 corresponds to the workload typical in a low volume sector during the night shift. A rating of 5
corresponds to when the controller would normally request the assistance of a second controller (a “D-side
assistant”). There were 433 instances where controller workload was sampled, and 331 of those samples
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were from controllers working unfamiliar sectors. Aircraft state data from the runs was logged every minute
during the runs. These data were used to compute the workload factors required by the models discussed in
the next section.

III.B. Workload Models

Nine workload models are analyzed in this paper. The first two, used in current air traffic management
operations, are scaled so that their output has the same magnitude as the controller workload ratings in the
simulation. Models 3 and 5 are scaled versions of published workload models.7, 8 Four models (numbers 4
and 6-8) use published workload factors7–9, 11 but estimate model parameters with data from this simulation.
The ninth model is new, and its factors were selected specifically for generic high-altitude airspace. These
models are summarized in Table 1. The intercept column in this table designates whether or not the model
includes an intercept term. Lists of the factors in each model are in the appendix.

Table 1. Workload Models

Model Number of

Number Model Name Factors Intercept

1 Aircraft count (AC) 1 No

2 Aircraft count divided by MAP (AC/MAP) 1 No

3 Dynamic Density (DD)7 Value 1 No

4 Dynamic Density (DD)7 Factors 17 Yes

5 Simplified Dynamic Density (SDD)8 Value 1 No

6 Simplified Dynamic Density (SDD)8 Factors 7 No

7 Dynamic Density with high automation (DDHA)11 5 Yes

8 Schmidt-Welch9 3 Yes

9 Dynamic Density for generic high-altitude airspace (DDGHA) 5 Yes

III.B.1. Models from Current Air Traffic Management Operations

The aircraft count (AC) model estimates workload as a scaled version of the aircraft count in the sector.
This model is similar to a workload metric commonly used in current operations: the number of aircraft in
the sector. This model serves as a baseline.

Aircraft count divided by MAP (AC/MAP) is the second workload model used in current operations.
It depends on a sector-specific capacity, measured in number of aircraft, known as the “Monitor Alert
Parameter” (MAP). MAP values published in August of 2009 were used for the sectors in this study. When
the number of aircraft in a sector exceeds the sector’s MAP value, air traffic controller supervisors must
evaluate the situation in the sector and determine if any actions must be taken to ensure safe operations in
the sector.

III.B.2. Scaled Versions of Existing Models

Two workload models are scaled versions of the workload estimates produced by published workload models.
The appropriate scaling factor parameter is estimated as discussed in sub-section III.C. Both of these
workload models contain a single workload factor that is a weighted sum of various other workload factors.
The parameters in the weighted sum can be found in previous publications.7, 8 The first such model is
called Dynamic Density Value (DD Value) and it is computed with the factors and parameters in Table 8
of Ref. 7 (which is reproduced in the appendix). It contains 17 factors and an intercept. The second such
model is called Simplified Dynamic Density Value (SDD Value) and it is computed with the factors and
parameters in Ref. 8 (available in sub-section IV.A). The published parameters in these models were found
based on human-in-the-loop simulation data, but the simulations were of current operations, not of generic
high-altitude airspace. The traffic in the simulations used by the SDD Value model exceeded current levels.
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III.B.3. Models with Factors from Existing Models

Four more models are weighted sums of different sets of workload factors. The factors are specified in previous
research. The model parameters are estimated with simulation data as described in sub-section III.C.

The workload factors in Ref. 7 are used in model number four, referred to as Dynamic Density Factors
(DD Factors). The sixth model is referred to as Simplified Dynamic Density Factors (SDD Factors) and it
contains the factors from Ref. 8. The factors in these two models were selected to model controller workload
in current operations.

Another workload model called Dynamic Density with high automation (DDHA) is a weighted sum of
the five factors specified in Ref. 11 and an intercept term (see appendix for details). The DDHA model was
developed to estimate controller workload in airspace similar to generic airspace. Its factors were selected
using data from a HITL simulation that was, other than the altitude levels used, similar to the HITL
described in sub-section III.A.

The Schmidt-Welch model is model eight. It was proposed in Ref. 9, which in turn was inspired by
Ref. 15. The factors in the Schmidt-Welch model were selected to model workload in current operations and
can be found in the appendix.

III.B.4. New Model

A new workload model is proposed and referred to as Dynamic Density for generic high-altitude airspace
(DDGHA). This model is a linear combination of a set of workload factors. Many factors are candidates
for this model, including all of the factors used in the other models, except for the DD Value and SDD
Value factors. These are excluded because they are not actually single factors, but rather combinations of
several factors. Factors from other research18 and factors developed based on expert judgement were also
considered. In all, 65 factors were considered for the new model.

The final set of workload factors is determined with training data and a technique referred to as “the lasso”
or ℓ1-regularization.19, 20 This approach depends on a weight on a regularization term, which was hand-tuned
for this application to eliminate most of the 65 candidate factors. The weight on the regularization term was
set to 1. The set of five factors is discussed in sub-section IV.B.

III.C. Parameter Estimation with Linear Regression

Each controller workload estimate and the corresponding workload factor values make up the available
data. Only data from controllers working unfamiliar sectors were used because lower familiarity will be
more common in generic airspace. The responses from one of the five controllers were almost always 1 and
this controller was deemed to be an outlier. Data from this controller were not used. The remaining data
are referred to as the relevant data and contain 259 controller workload measurements and corresponding
traffic and sector data. The relevant data were randomly ordered. Cross-validation19 was used to repeatedly
separate the data into training and testing sets.

For each pair of training and testing data sets, the training data were used to estimate the linear model
parameters with linear regression. When multiple factors were considered in the same model, the factors’
values were normalized so that they all were between zero and one. This common practice ensures that
factor magnitudes, which depend on the units of measure used, do not impact statistical analyses. The
coefficients in the SDD and DDGHA models were restricted to be positive because workload should increase
with each workload factor. This restriction was first used by Klein, Rodgers, and Leiden in Ref. 8. In the
case of the DDGHA model, factors were selected using each training data set and ℓ1-regularization before
linear regression was used to find the appropriate parameters for the selected factors.

IV. Results

The distribution of workload estimates in the relevant simulation data is shown in figure 2. In the
majority of the cases (87%), the workload was estimated to be three or less, so the simulation did not induce
many high workload situations.

The distribution of aircraft count values at the time instances when controller workload estimates were
recorded is also shown in figure 2. The largest such aircraft count was 19, and at more than half of the times
where workload was recorded there were 10 or more aircraft in the sectors. The current MAP values of the
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sectors in the simulation are 13, 18, 18, 19, and 23 for sectors ZOA 30, ZOA 33, ZOA 43, ZLC 42, and ZLC
45, respectively.
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Figure 2. Distribution of (a) workload estimates and (b) aircraft counts at the times that workload estimates were
recorded in the simulation runs.

The relationship between the aircraft count in each sector and the controller workload is shown in the
bubble plot in figure 3. In general, larger aircraft counts correspond to higher controller workload levels.
There were some exceptions, such as when a controller specified a workload level of four but only two aircraft
were present in the sector. In that particular case, two losses of separation had occurred in the sector in the
three minutes before the controller workload was recorded. Those losses of separation, not the two aircraft
in the sector, were probably the cause of the high workload at that time.
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Figure 3. Bubble plot showing the relationship between aircraft count and controller workload. The area of the marker
at each point is proportional to the number of data instances at that point.

The workload models were evaluated by the root mean squared error (RMSE) and mean absolute error
(MAE) they produce in the test data sets. Lower errors indicate more accurate workload estimation models.
The models were also evaluated according to the square of the correlation or R2 value in the test data sets.
The R2 range is between 0 and 1. Larger R2 values indicate that a higher fraction of the variation in the
controller workload in the test data sets is explained by the model. Table 2 shows the performance of the
models.
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Table 2. Performance of Workload Metric Models

Workload Model RMSE MAE R2

AC 0.966 0.782 0.252

AC/MAP 0.914 0.724 0.234

SDD Value 0.908 0.729 0.238

SDD Factors 0.820 0.674 0.304

DD Value 1.878 1.645 0.034

DD Factors 0.740 0.603 0.346

DDHA 0.796 0.630 0.238

Schmidt-Welch 0.761 0.606 0.301

DDGHA 0.653 0.534 0.489

The workload models based on current operations (AC and AC/MAP) lead to higher RMSE and MAE
values and lower R2 values than most other models. The error metric values produced by the workload
models based on currently operational workload models (AC and AC/MAP) can be more than 45% larger
than the error metric values produced by models with more factors, and the R2 values can be as much as
0.255 lower. This implies that using workload models that are a linear combination of a set of workload
factors (all models other than AC and AC/MAP) leads to more accurate workload estimates than models
based only on aircraft count or aircraft count divided by MAP. Previous workload research that was not
focused on generic high-altitude airspace also reached this conclusion.7

The SDD Factors and DD Factors models outperform the SDD Value and DD Value models, respectively,
according to all three performance metrics. SDD Factors achieves error metrics that are 8–10% smaller and
R2 values that are 0.066 larger than those achieved by SDD Value. DD Value performs worse than any other
model, but DD Factors performs better than every model except for DDGHA. DD Value performs poorly
partially because it multiplies a sector volume factor by a relatively large and negative parameter that is
not properly tuned for the airspace used in this simulation. However, even when this parameter is set to
zero, DD Value still performs worse than any other model. These SDD and DD models estimate workload
in generic high-altitude airspace more accurately when they are trained with data from generic high-altitude
airspace, as would be expected. The SDD parameter estimates are presented in sub-section IV.A.

DDGHA performs better than any other model, which is to be expected because its factors were selected
based on generic high-altitude airspace simulation data. The RMSE achieved by DDGHA is at least 12%
lower than the RMSE of all other tested models, its MAE is at least 11% lower than the MAE of all other
tested models, and its R2 value is at least 0.143 larger than the R2 value of all other tested models.

The performance of these workload models in generic high-altitude airspace is poor relative to the recently
published performance of the same models. Figure 4 shows recently published R2 values for the DD,7 SDD,8

and DDHA11 models and the R2 values computed in this paper for the models when operating in generic
high-altitude airspace. The R2 values in generic high-altitude airspace are lower than the published values,
indicating that the models explain a lower fraction of the variation in controller workload in generic high-
altitude airspace than in the airspace simulated in previous research.

There are several possible reasons for this lower performance. Since the performance of the models is being
evaluated in different types of airspace, different data sets from different simulations must be used. While
these simulations and data sets are similar to the simulation and data set used in this paper, there are several
important differences. Different controllers with different skills and perceptions of workload were used in the
other simulations, and the data sets used in previous research were not the same size as the data set used here.
Also, the previous research used workload scales ranging from 1–77, 11 and 1–10,8 whereas in this research,
workload was rated on a scale from 1–5. Furthermore, the definitions of what any particular workload rating
means may differ between simulations. The previous studies were based on human-in-the-loop simulations
of different geographical regions and different traffic patterns. In this research, each workload model is being
used to estimate the workload in five different sectors, but in previous studies the models only estimated
workload in one,8 two,11 or three7 sectors. However, the performance of the models in generic high-altitude
airspace did not improve much when built for fewer sectors rather than all five, so the number of sectors in
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the simulation may not be a cause of model performance differences. In the generic high-altitude human-
in-the-loop simulation, traffic volumes were approximately at the same level as they are today. In previous
research, the traffic volumes varied between 1–1.66 times current levels8 and 1–3 times current levels.11

Perhaps a wider range of traffic volumes and correspondingly wider range of workload levels in the data
set facilitate more accurate model parameter estimation and better model performance. Finally, the model
forms and workload factors that explain workload variations in some airspace may not work well in generic
high-altitude airspace due to the differences in controller familiarity with sectors, automation, and sector
altitude levels. Further research should be conducted to determine why this lower performance is observed in
generic high-altitude airspace and to find metrics that correlate with safe and efficient operations in generic
high-altitude airspace. These metrics may be estimates of controller workload, or may be quantifications of
the performance of automation involved in generic high-altitude airspace.

IV.A. SDD Parameters in Generic High-Altitude Airspace

The differences between SDD parameter estimates derived with data from current operations and estimates
derived with data from generic high-altitude airspace can give insight into differences between controller
workload in these two contexts. The parameters in the SDD Factors model estimated with all the relevant
data from the generic high-altitude airspace simulation are shown in Table 3, along with the SDD parameters
published in Ref. 8.

The SDD parameter values for generic high-altitude airspace are scaled to be on roughly the same scale
as the baseline SDD parameter values by dividing each by the estimate of the amount by which the SDD
value must be scaled down to estimate workload measurements on a 1–5 scale. Dividing by this quantity
performs the opposite scaling from a 1–5 scale to the SDD scale. Raw SDD values are between 8 and 9 times
larger than workload measured on a 1–5 scale.

There are several notable differences between these two sets of parameter values. The aircraft count
parameter decreases by more than half when the parameters are estimated with the generic high-altitude
airspace simulation data, but the aircraft per volume parameter is almost 75% larger. The proximities
and altitude transfers parameters decrease. The boundary transfer parameter decreases so much that it is
effectively zero. This change may be the result of a more automated boundary transfer process in generic
airspace. The parameters for heading and speed variance decrease slightly and almost double, respectively.
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Table 3. SDD Parameters

Factor Baseline SDD8 Generic High-Altitude SDD

Aircraft count 2.20 1.06

Proximities 0.400 0.111

Altitude transfers 0.300 0.237

Boundary transfers 0.500 0.000

Aircraft per volume 30,000 52,300

Heading variance 0.000500 0.000485

Speed variance 0.000500 0.000917

IV.B. Dynamic Density for Generic High-Altitude Airspace Model

The factors selected for the new DDGHA model and their corresponding parameter estimates can provide
insight into the nature of workload in generic high-altitude airspace. Table 4 shows the workload factors and
associated parameter estimates in the DDGHA model.

To generate the factors and parameters in Table 4, all the relevant data were used as training data for
the ℓ1-regularization factor selection process and subsequent linear regression parameter estimation process.
The source workload model that each factor came from is also shown in the table. When each factor value is
normalized by dividing it by the largest factor value in the training data set, the linear regression parameter
estimation produces the normalized parameters. The normalized parameter values make more apparent the
relative contribution of each factor to workload.

Table 4. DDGHA Factors, Sources, and Parameters

Normalized

Factor Source Parameter Parameter

Intercept 0.562 0.562

Boundary transfers SDD8 0.00221 0.0751

Aircraft per volume SDD8 4850 0.767

Number of aircraft near boundary DD7 0.124 1.05

Aircraft predicted to enter Gianazza and Guittet18 0.0778 1.79

sector within five minutes

Aircraft count divided by Schmidt-Welch9 0.196 0.339

average dwell time

Interestingly, this model does not include aircraft count, which is in most workload models, including those
that are used in current operations. It does include aircraft per volume, aircraft predicted to enter the sector
within five minutes, and aircraft count divided by average dwell time, which are related to and correlated
with aircraft count. DDGHA includes boundary transfers, even though the parameter for this factor was
estimated to be zero in SDD (see sub-section IV.A). Assuming that the magnitudes of the normalized
parameter values indicate the relative contribution of each factor to the model’s workload estimate, the
aircraft predicted to enter the sector within five minutes factor contributes the most workload, followed by
the number of aircraft near a boundary factor and the aircraft per volume factor.

V. Conclusions

The ability of nine models to estimate controller workload in generic high-altitude airspace was studied
using data from a human-in-the-loop simulation of generic high-altitude airspace. The models were evaluated
based on their ability to estimate subjective controller workload measurements using corresponding workload
factors computed from sector and traffic data. Workload models that are a linear combination of 3–17
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workload factors can estimate controller workload more accurately than workload models based only on
aircraft counts or aircraft counts divided by MAP values. Existing workload models achieved RMSE and
MAE values that were at least 8% lower when the model parameters were estimated with data from the
generic high-altitude airspace simulation. The factors in the DDGHA model were selected with data from
the generic high-altitude airspace simulation, and it achieved RMSE and MAE values that were at least 10%
lower than those achieved by any other model and an R2 value that was 0.143 larger than the next largest
R2 value. The DD, SDD, and DDHA models achieve R2 values in generic high-altitude airspace that were
at least 0.3 lower than recently published R2 values for the same models. This relatively poor performance
of workload models in generic high-altitude airspace could be the result of several potential causes. Further
research should be performed to find predictable metrics that correlate with safe and efficient operations
in generic high-altitude airspace. These metrics may explicitly depend on the automation used in generic
airspace.

Appendix

This appendix contains information about the workload models studied in this paper. For a detailed
description of a model, consult the cited publications for the model.

The AC model contains just one factor: the instantaneous aircraft count in the sector. The AC/MAP
model also only contains one factor: the instantaneous aircraft count in the sector divided by the sector
MAP value.

The DD Value model consists of just one factor. This factor is a weighted sum of the 17 factors and
intercept shown in Table 5. These factors and the weights in the weighted sum (the parameters) are from
Table 8 in Ref. 7. The DD Factors model used the 17 factors in Table 5 and an intercept term with parameters
selected with the HITL simulation data.

The SDD Value model consists of just one factor: a weighted sum of the SDD factors in Table 3. The
weights in the weighted sum are found in the “Baseline SDD” column of this table; these weights are from
Ref. 8. The SDD Factors model uses the seven factors in Table 3 but with parameters selected with the
HITL simulation data.

The DDHA model uses the factors in Table 6. These factors are from Ref. 11.
The Schmidt-Welch model consists of the factors in Table 7. These factors are from Refs. 9 and 15.
Finally, the factors and corresponding parameters for the DDGHA model are in Table 4.
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